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Abstract

The application of pulsed heating by a laser beam to determine the thermal properties of microparticles is explored.
Two problems are analyzed: (i) spatially uniform heating of the surface of an absorbing microsphere, and (ii) non-
uniform surface heating based on Mie theory computations of the electromagnetic energy source. A parametric study
shows that the spatially uniform heating model is sufficient when the thermal conductivity of the microparticle is
sufficiently large or the Biot number is sufficiently low, but a more rigorous model is needed to predict the temperature
distribution with the microsphere for lower thermal conductivity materials. The resulting analytical solutions are
compared with previously published experiments involving infrared heating of single spherocarb particles and are shown
to be in good agreement with time-dependent surface temperature measurements. © 1998 Elsevier Science Ltd. All

rights reserved.

Nomenclature

a particle radius

Amn(t)  time-dependent function

Bi composite Biot number

C specific heat

E,E* electric vector and its complex conjugate
f(r) pulse function

h. conduction/convection heat transfer coefficient
h, radiation heat transfer coefficient

I, intensity of the incident laser beam

J,(z) Bessel function of the first kind of order p
m,, refractive index ratio

n order of the Legendre polynomial

N refractive index

N,,, norm of the eigenfunction, X,,,,(x)

p order of the Bessel function

P,(n) Legendre polynomial of order n
Q(r,0,¢) heat source function

rradial coordinate

S(x,n,7) nondimensional source function

t time
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T temperature

U, W dimensionless temperatures
x dimensionless radial coordinate
X size parameter

X,.(x) eigenfunctions.

Greek symbols

o, absorptivity of the particle

f dimensionless irradiance

vom clgenvalues

& emissivity of the particle

n =cosf independent angular variable
0 polar angle

Kk thermal conductivity

Aine  Wavelength of the incident laser beam
An eigenvalues

1  magnetic permeability

p density

o the Stefan—Boltzman constant

T dimensionless time

¢ azimuthal angle.

Subscripts

1 particle property

2 surrounding gas property

¢ refers to conduction or convection
inc incident beam property

r refers to electromagnetic radiation.
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1. Introduction

Particles with sizes in the range 1-200 pum are en-
countered in the atmosphere and produced in a number
of processes. Of particular interest here are carbonaceous
particles associated with combustion processes. The ther-
mal and radiative properties of such microparticles can
be measured by single particle experiments in which a
charged microparticle is levitated in an electrodynamic
balance (EDB) and illuminated with a laser beam. The
principles and applications of the EDB have been sur-
veyed by Davis [1, 2]. Spjut et al. [3] at MIT introduced
the electrodynamic  thermogravimetric  analyzer
(EDTGA) for the study of carbonaceous particles, and
the MIT group performed a variety of investigations
reviewed by Bar-Ziv et al. [4]. These include particle
temperature measurements by infrared pyrometry and
transient heating experiments [5]. Bar-Ziv and Sarofim
[6] provided an additional review of the literature associ-
ated with particle heating in an EDB, including the effects
of microparticle properties on the electromagnetic heat
source function.

Monazam et al. [7] and Monazam and Maloney [8] at
the Morgantown Energy Technology Center (METC)
adapted the techniques of Spjut and his coworkers to
determine heat capacities, temperatures and absorp-
tivities of single carbon particles by means of pulsed
heating experiments. A levitated particle with a diameter
of order 100 ym was illuminated from two sides using a
CO, laser (10.6 um wavelength) with a repetition rate
of 100 Hz and a pulse duration of 3 ms. The particle
temperature was determined from measurements of the
radiant emissive power of the particle using Planck’s dis-
tribution law for the monochromatic radiant emission
intensity.

The time-dependent temperature distribution in the
microsphere was modeled by assuming that the heat flux
associated with the electromagnetic radiation is uniform
over the surface of the sphere. That is, the heat source
was treated as a boundary condition rather than as an
electromagnetic heat source within the sphere. Con-
vective and radiative heat losses were included in the
surface boundary condition, but for the conditions of the
experiments gas phase conduction was the dominant heat
loss. They solved the governing unsteady state heat con-
duction equation numerically, and performed parametric
studies, comparing predicted surface temperatures with
measured temperatures. The authors recognized that the
use of a spatially uniform energy flux at the surface is an
approximation that may not be valid for other materials
with physical and optical properties that differ from
carbon.

It was the objective of this work to develop a more
rigorous analysis of unsteady state heating of a sphere by
electromagnetic radiation, taking into account a spa-
tially-dependent surface energy flux based on Mie theory.

The analysis of the METC group is recovered as a special
case of a more general formulation.

2. Uniform surface heating

The governing conduction equation and auxiliary con-
ditions used by Monazam and his coworkers are

T 14a(,0
P1C15:K1;a<” ?f) (D
T(0) = T, @
0.y =0 3)
or
and

a—T( z)—l L. (t
Ky ar a, _Zocr inc()

— th[T(a, 1) = T(c0, )] +0e[T*(a, ) = T*(c0, O]} (4)

The incident intensity in boundary condition (4) is div-
ided by two because the laser beam was split to heat the
particle from two sides.

Monazam et al. solved this system of equations
numerically, but for the conditions used in their exper-
iments an approximate analytical solution can be
obtained. This is accomplished by writing the approxi-
mation
T4 (a7 l) - le

= [Ti(a: OO)J’_T?J][T‘M(LI: OO)+T%] [T(Cl, t)_Tx] (5)
in which T7,,(a, 00) is the mean surface temperature at

large times, which can be computed by solving the energy
balance,

0.3
0= 7a1'1inc _hc[Tm(as OO) —T J] _Ggr[T31(av w) - Ti]

2
(6)

Here it is assumed that the heat flux averaged over one
cycle is zero at large times, and that the electromagnetic
energy was applied during 30% of the cycle which cor-
responds to the experiments of Monzama et al. Thus,
using the linear approximation for the radiation heat loss,
boundary condition (4) approximates to

oT 1
Ky E(aa [) = Earlinc(t) - (h(_ +hr)[T(a7 t) - T(OO, [)] (7)
in which
he = [T}, (a,0) + T[T, (a,00)+T.]. ®)
As considered by Monazam et al., the heat transfer
coeflicient, /4, is ,/a for a stagnant gas and for low gas
Peclet numbers. For their conditions, A, was less than
10% of A, so the linearization should be accurate at later

times. The heat loss at early times is overestimated by
this approximation because /4, is overestimated by using
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the asymptotic mean surface temperature. Thus, it can be
anticipated that the analytical solution developed using
approximation (5) will underpredict the temperature at
small times.

Defining nondimensional variables and parameters by

U.t) = T—T, T
(’X’T - TO > X = aa
t ho+h
ot g etha ©)
PG g2 K
the boundary value problem becomes
ou 1 0 ( ,0U
*75( ax> (10)

U(x,0) =0, 671](0’ 1), (sz(l,r) = pf(r)—BiU(1,7).
0x ox

an
Here f is the dimensionless electromagnetic energy flux
defined by

a(xrlinc
2k, T,
and the normalized pulse function, f{t), is unity for the
first 3 ms of a pulse and zero for the next 7 ms of each

pulse for the conditions of Monazam et al.
The solution of this system of equations is

B = (12)

sin A, sin ,x

U(x, 1) = 2p(1 — Bi) i

n=1(sin® A, —Bi) ¥
x ff(r’) exp[—2(—)]dr (13)

where the eigenvalues satisfy the transcendental equation

(14)

Carslaw and Jaeger [9] tabulated some of the eigenvalues
based on equation (14) for a number of values of (1 — Bi).
The dimensionless surface temperature becomes
0 in2 in
U(lt) = 2p(1—Bi) ¥ — 1
n=1(sin* 4, — Bi)

x ff(r’) exp[— 22—t dr. (15)

This result is compared with the numerical solution of
Monazam and Maloney in Fig. 1. The physical par-
ameters they used are a=70 um, o, =c¢ =0.85,
L =450 MW m™2 k; = 1.675Wm™' K~ x, = 0.048
Wm 'K, C, =1466 J kg=' K, and p, = 1050 kg
m . The Biot number corresponding to their conditions
is 0.032. The agreement is excellent at later times, and
during the transient period when the time-averaged tem-
perature changes, the analytical solution predicts tem-
peratures only slightly lower than the numerical solution.

Monazam et al. used the same physical parameters as

Monazam and Maloney to match theory and experiment
except that they used ¢ = 65 ym and C, = 1675 J kg™!
K ™!, which corresponds to Bi = 0.031. They did not
report the value of «, used, but they did state that their
experimental results were consistent with values of o,
between 0.80 and 0.85. An expanded graph of their exper-
imental results and our solution for the asymptotic
region, in which the time-averaged surface temperature
is constant, is presented in Fig. 2. Our solution is based
upon an assumed value of o, = 0.85. A more detailed
comparison between theory and experiment is shown in
Fig. 3 for one cycle in the asymptotic region. The agree-
ment is very good, indicating that the best-fit parameters
selected by Monazam and Maloney are consistent with
their model of uniform surface heating.

3. Spatially nonuniform heating

The assumption of uniform surface heating is highly
questionable when the thermal conductivity of the par-
ticle is not as large as that of carbon. A high thermal
conductivity leads to small temperature gradients within
the particle, and temperature variations associated with
nonuniform heating can be expected to be smaller than
for low-conductivity materials. The problem of plane
wave electromagnetic heating of a sphere is described by
Mie theory, and the treatise by Bohren and Huffman [9]
provides details of Mie theory. The internal heat gen-
eration function for an absorbing sphere is

47l Re[N,]Im [N,] o E-E*
/linc 13 E|2nc '

The radial, polar and azimuthal components of the elec-
tric vector at any point within the sphere are given by
Bohren and Huffman in terms of the internal scattering
coeflicients and radial and polar eigenfunctions, and the
reader can refer to that source for details. For a homo-
geneous sphere the internal electric field is governed by
the size parameter, X = 2naN,/A,., and the relative
refractive index, m,, = N,/N..

Greene et al. [11] computed a number of source func-
tions for various complex refractive indices and various
size parameters, showing that the source function is very
sensitive to both parameters. They presented normalized
source functions for size parameters from 0.5-20.

Allen et al. [12] analyzed the problem of steady state
one-sided heating of an absorbing microsphere using a
Green’s function solution to determine the temperature
distribution within the sphere. They did not include the
radiation boundary condition but used the heat source
given by equation (16). Foss and Davis [13] extended the
solution to unsteady state heat transfer by numerical
computation, finding that significant temperature gradi-
ents arise with one-sided heating. Both Allen et al. and
Foss and Davis computed source functions, Q(r, 0, ¢), for

o, 0,¢) = (16)
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Fig. 2. A comparison between equation (15) and the data of Monazam et al. in the asymptotic region.

carbonaceous spheres having complex refractive index
N = 5.0+i4.0 at a laser wavelength of 10.6 um.

For the 140 um diameter sphere of Monazam and
Maloney, X =41.498. Using a refractive index of
N =5.0+i4.0, we computed the source function pre-
sented in Fig. 4 for one-sided heating. Due to the strong
absorption of electromagnetic energy, the source is con-
centrated near the surface. Our computations indicate
that all of the energy absorption is confined to the outer

2% of the sphere, that is, to the region x = r/a > 0.98,
and the source function is nearly independent of azi-
muthal angle ¢. The result shown in Fig. 4 is qualitatively
similar to those obtained by Greene et al. for the largest
size parameter used by them.

The pulsed heating problem can now be solved using
a source function such as that depicted in Fig. 4 or as an
equivalent surface source problem. For two-sided heat-
ing, the shape of the source function, considered as a
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Fig. 4. The electromagnetic source in the half-sphere computed from Mie theory for one-sided heating.
surface source, can be approximated by the intensity dis- malized electric field strength at the surface,

tribution

I(a,0) = (17)
where /., is the intensity at 0 = 0, 180°, and 6 is measured
from the direction of propagation of one of the laser
beams. If [, is the laser intensity prior to beam-splitting,
I = 31,/2 for the same energy absorption over the
entire surface as in the previous case of uniform heating.
The normalized intensity distribution, I(a,0)/I, .,
described by equation (17) is compared with the nor-

2
L. COS™ 0

E(a, 0) - E*(a, 0)/E(a,0) - E*(a,0), in Fig. 5. The cosine-
squared distribution is seen to be in very good agreement
with the rigorous surface distribution function computed
from Mie theory.

When the angular dependence of the temperature dis-
tribution is considered the nondimensional governing
equations become

U_10(L.00, Lol )
S\ TV

ot

(18)



4200

J.F. Widmann, E.J. Davis|/Int. J. Heat Mass Transfer 41 (1998 ) 4195-4204

T T T T T T T T

I 1 " 2 L 1 n 1 1

1 T T T T T T
% RS 00326
= E.E*
2 LT 2
E - Einc r=a
= 06rF =
@ L
O -5
E o0af
B I
Z L
L I
'g 0.2+
O- .——1": R
100 120

140 160 180

POLAR ANGLE, ¢

Fig. 5. The normalized surface source computed from Mie theory compared with the approximation, equation (17).

ou
U(x,0) =0, —(0,7)=0,
0x

(19)

The solution of this problem can be obtained by writing
U(x,n, 1) as a superposition of two functions,

a—U(l,r) = 3Bf(v)y* —Bi U(1,1).
0x

U(x,n,7) =

Xfom* +Wi(x,n,1). (20)

(2+ Bi)
The first function on the right-hand side of equation
(20) satisfies the inhomogeneous boundary condition at
x = 1, and W(x,n, t) satisfies the inhomogeneous partial
differential equation

al/_ii Zal/ +i£ (] 2)07”/ S( )
v eox\" ax )T eV T oy |TOMT
(1)

with auxiliary conditions,

_ 3B iy
W(x,n,0) = — (2+Bl.)x,f(0)n ,
ow ow )
E(Oa 77"5) = 05 g(l,f) = —Bi W(ls n, T)- (22)

The source term S(x, 7, 7) is

3p : 4
T (2+Bi) {[6"(’)’x dﬂ”

+2/(n( —377)2)}- (23)

Sx.n,7) =

We note that the problem involving W(x,#,1) is the

equivalent of the source term problem in which
—S(x,n,7) in equation (21) is replaced by the volumetric
source pCa’Q(r, 0, ¢p)/x, T, with Q(r, 0, ¢) given by equa-
tion (16), and W(x,n,0) =0 based on the initial con-
dition that 7' = T,,.

Since Py(n) = 1, and P,(n) = (3n*/2—1/2), where P, (1)
is the Legendre polynomial of order n, we look for a
solution of the form

Wxn.7) = i A0 (D)X, (X) Py 1)

m=

+ Y An@Xn P (4)

m=1

where the eigenfunctions are

2 siny,,0x

Y mo X

)(1710 (x) = (25)

1
7']],/2 (Vmox) =
NG
and

1 [ 2
Xpn(xX) = —=J5p(uaXx) =
\/; TTYm2

3 1 3
X |:< — 7> SN y,,, X — cos ymzx}. (26)
Ym2X ¥ Pia X

Here J,(2) is the Bessel function of the first kind of order

p, and p =(1/2)./1+4n(n+1) for n = 0 and 2. The eig-
envalues 7,,, satisfy the same transcendental equation as
A, equation (14), and eigenvalues 7,,, satisfy

“/3:2 - 3(3 - Bi)"/ymZ
(4~ Bi)ymn —3(3— Bi)

tan Vm2 = (27)
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Substituting these results into equation (21) and the
initial condition, and applying orthogonality of the eig-
enfunctions, one obtains

3ﬂ & 12 . "/1310
= (2+Bz‘),,,; {—?f(r) +<211+ 3 12>

x J f(@) e T dr’} Xno ()
0

W(x,n,1)

NmO
2p 3
— I —n
(2+Bl) < ))nzl 3 {f(f) l)mZ
Jf(f)e 22— 9 dr } mz(Y). (28)
NmZ
Here the norms, N,,,, of the eigenfunctions are
w0 — SINY,.0 COS Y,
N2, = (Vo Vzo Ymo) (29)
T[’VWO
and

NmZ = [-]5 2 (V) + Js 2 (Pm2)] — s—JIsp (’ym2)‘l3 2 (Vm2)-

/;

(30)
The integrals /,, I, and I; are defined by
1
Il = J x/2A/m0 (X/) dx/ = (Sln ))mO /110 cos Vmo)
Y nl)mO
€)Y}

! [ 2
IZ = J x/4XmO (x,) dx’ = [(3'})310 - 6) sin )'mO
0 T mo

- (’/310 - 6?310) Cos ’ym()] (32)
and

! 1
Iy = J XX, (x) dx = ij (Ym2)- (33)
0

Finally, the nondimensional temperature distribution
U(x,n,7) is given by equation (20) with W(x,n, 1) given
by equation (28), and the nondimensional surface tem-
perature reduces to

U(la n, T) = {[l—f(f)]

B
2+ Bj)

Z X, (1)
+ z (61, +“/51012) 02

m=1 mo

m 1 2 ,
+(37’] -1 Z V",213 sz( )J f(r’)e*rmz(fff)dr’}.
0

m=1

T
J fwye mt0dr
0

m2

(34)
The last term in equation (34) shows explicitly the depen-
dence of the surface temperature on polar angle since

n = cos . The maximum surface temperatures can be
expected to occur at 0 = 0° and 180°. We note that when

7> =1/3 (or 0 =54.34° and 125.26°) the last term in
equation (34) vanishes.

The surface temperatures at 6 = 0 and 90° calculated
using equation (34) are plotted in Fig. 6 as a function of
time from ¢ = 0-0.3 s, which covers the transient period.
The physical parameters used by Monazam and Maloney
have been used for the computations. Even for the rela-
tively low Biot number involved in these results the sur-
face temperature varies nontrivially in the 6 direction.
The temporal temperature fluctuations at 0 = 0° range
over 190 K at long times, and those at 6 = 90° range over
70 K. This is more clearly shown in Fig. 7 when the
surface temperature in the asymptotic region is shown for
0 =0, 30, 60 and 90°. Thus, relatively large temperature
gradients in the O-direction are encountered in the
particle.

At larger Biot numbers (or smaller particle thermal
conductivities) the angular variation in the surface tem-
perature becomes even more significant. This is shown in
Fig. 8 for # = 0 and 90° with k, = 0.167 (Bi = 0.320).
The other physical properties are those used by Monazam
and Maloney. Note that large temperature fluctuations
occur at 0 = 0° where the electromagnetic energy flux is
a maximum, but the fluctuations at 6 = 90° are severely
damped due to the low thermal conductivity of the
particle. The large temperature gradients are more clearly
observed in Fig. 9 which shows the surface temperature
at 0 = 0 and 90° for one cycle. Unlike the case for the
lower Bi number shown in Fig. 7 (x, = 1.67, Bi = 0.032)
in which the maximum temperatures at each angle are
nearly in phase, the maximum temperature at 0 = 90°
lags behind the maximum at 6 = 0° due to the lower
thermal conductivity of the particle.

4. Discussion of results

The linearized theory developed above is valid pro-
vided that /. > h,, but as the laser intensity increases the
linear approximation of equation (8) becomes inaccurate,
and the nonlinear system must be solved numerically.
For the conditions of Monazam and his coworkers the
asymptotic mean surface temperature is 1015 K,
Thax = 1080 K and T, = 950 K from Fig. 2, which is
based on no angular variations in the surface tempera-
ture. The radiation heat flux is given by

qr = 06 [T*(a,00) = T2, (35

which, for the conditions used to obtain Fig. 2, yields a
flux based on the mean temperature of ¢, = 50.8 kW m 2
K ~'. This should be compared with the conduction heat
flux given by

g =" [T(a,0) = T..]. (36)

Based on T,,(a,0) = 1015 K, ¢. = 531.7 kW m 2 K.
The maximum and minimum radiation heat fluxes at
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Fig. 6. The time-dependent surface temperature computed using equation (34) for 6 = 0 and 90° with Bi = 0.032.
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Fig. 7. The surface temperature for one cycle in the asymptotic region for Bi = 0.032 and various angles 6 = 0, 30, 60 and 90°.

large times are given by g, . = 65.2 kW m™2 K ~' and
Gemin = 38.9 kW m~2 K~'. The corresponding con-
duction heat fluxes are g = 579.7 kW m~2 K ~! and
Gemin = 483.7 kW m~2 K =", The total heat fluxes become
Gmax = 0645.1 kW m™? K™, g, = 522.6 kW m > K~
and ¢,, = 582.5 kW m~2 K ~!. The radiation heat flux is
seen to be less than 11% of the total heat flux at any
surface temperature reached.

Neglecting angular variations in the surface tempera-

ture, the composite Biot numbers corresponding to these
conditions are Bi,, = 0.0319, Bi, = 0.0310, and
Bi,, = 0.0314. Thus, the composite Biot number, which
governs the heat loss, is nearly independent of the fluc-
tuations in the surface temperature in this case, and the
use of the asymptotic mean surface temperature to deter-
mine the radiation heat loss will be accurate. As I,
increases, however, the linear approximation becomes
invalid.
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Fig. 8. The time-dependent surface temperature computed using equation (34) for 6 = 0 and 90° with Bi = 0.320.
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Fig. 9. The surface temperature for one cycle in the asymptotic region for 6 = 0 and 90° with Bi = 0.320.

When the more realistic model of the surface
irradiation is applied, the surface temperature fluc-
tuations increase, but again the local composite Biot
numbers will not vary greatly provided that nonlinear
effects are small. The analytical solution, equation (34),
makes it possible to routinely carry out parametric stud-
ies to determine the best fit of the parameters to match
experimental data. It was shown above that significant
temperature gradients can result in the particle due to the

non-uniform heating, and that even modest values of Bi
canresult in angular variations of the surface temperature
that persist throughout the entire heating cycle.

The analysis developed here can be extended to one-
sided heating, and one can expect very significant angular
variations in the surface temperature when one-sided
heating is applied. It is also possible to relax the assump-
tion of surface heating by using the internal heat source
computed from Mie theory to generalize the procedure
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to any microsphere with a known size and complex
refractive index.
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